Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.11.574849

ABSTRACT

Translating findings from animal models to human disease is essential for dissecting disease mechanisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has highlighted this need, particularly for models showing disease severity-dependent immune responses. Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species at the molecular and cellular level with unprecedented resolution. However, computational methods enabling detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe COVID-19. Integration of COVID-19 patient data with two hamster models that develop moderate (Syrian hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified the overall transcriptomic similarity across species and severity levels, showing highest similarity between neutrophils of Roborovski hamsters and severe COVID-19 patients, while Syrian hamsters better matched patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide differential expression analysis to identify which disease stages and cell types display strongest transcriptional changes. Consistently, hamsters response to COVID-19 was most similar to humans in monocytes and neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural network-supported workflow could be applied to other diseases, allowing better identification of suitable animal models with similar pathomechanisms across species. Key PointsO_LINeural networks can successfully match disease states between animal models and humans using single-cell data as shown for COVID-19 C_LIO_LIModerately diseased patients best matched Syrian hamster cells; severely diseased patients best matched Roborovski hamster neutrophils C_LI


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.16.492138

ABSTRACT

Vaccines are a cornerstone in COVID-19 pandemic management. Here, we compare immune responses to and preclinical efficacy of the mRNA vaccine BNT162b2, an adenovirus-vectored spike vaccine, and the live-attenuated-virus vaccine candidate sCPD9 after single and double vaccination in Syrian hamsters. All regimens containing sCPD9 showed superior efficacy. The robust immunity elicited by sCPD9 was evident in a wide range of immune parameters after challenge with heterologous SARS-CoV-2 including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue. Our results demonstrate that use of live-attenuated vaccines may offer advantages over available COVID-19 vaccines, specifically when applied as booster, and may provide a solution for containment of the COVID-19 pandemic.


Subject(s)
COVID-19 , Memory Disorders
SELECTION OF CITATIONS
SEARCH DETAIL